AMPLIFICATION CIRCUITS AND PATTERNING METHODS OF ORGANIC FIELD-EFFECT TRANSISTORS NSF Summer Undergraduate Fellowship in Sensor Technologies

نویسندگان

  • Hank Bink
  • Cherie Kagan
چکیده

Organic transistor technology holds great promise for creating a conformal, human-safe electronic neural interface. These interfaces must amplify the low, microvolt-range brain signals so they can be utilized in analog and digital applications. Brain signals from sensors must be relayed to the transistor’s gate through the dielectric and semiconductor layers, as well as through an encapsulant which keeps the device shielded in the aqueous brain environment. In order to test their amplification gains, silicon wafer-based ambipolar organic transistors with a pentacene semiconductor were tested under nitrogen in amplifying configurations including common source and cascode. Gains for common source amplifiers with resistors were up to 3.5V/V. Gains for the cascode setup revealed the same results as common source. Both the common source and cascode topologies exhibited very low bandwidth with -3dB points of 35 and 25 hertz, respectively. Parylene C, a biologically safe polymer, is a leading candidate to encapsulate pentacene transistors and serve as a dielectric layer between the devices and sensing electrodes. We tested etching of this parylene as well as the dielectric materials benzocyclobutene (BCB) and spin-on-glass (SoG) using both oxygen and SF6 plasma etching. Parylene was etched at a rate of 0.2μm/min with O2 plasma. BCB and SoG did not exhibit useful etching under O2 or SF6 plasma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-room-temperature Processed Metal Oxide Field Effect Transistors for Large-area Electronics

Recently, sputtered metal-oxide-based field effect transistors (FETs) have been demonstrated with higher charge carrier mobilities, higher current densities, and faster response performance than amorphous silicon FETs, which are the dominant technology used in display backplanes [1-2]. Furthermore, the optically transparent semiconducting oxide films can be deposited in a near-room-temperature ...

متن کامل

Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks.

Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors...

متن کامل

Photocatalytic patterning and modification of graphene.

TiO(2)-based photocatalysis has been widely used to decompose various organic pollutants for the purpose of environmental protection. Such a "green" photochemical process can ultimately degrade organic compounds into CO(2) and H(2)O under ambient conditions. We demonstrate here its extended application on the engineering of single- or few-layer graphene. Using a patterned TiO(2) photomask, we h...

متن کامل

Organic thin-film transistors: from technologies to circuits

Organic molecules (i.e. carbon-based) have opened a new and rapidly-growing industrial field in the optoelectronic market bringing to this field a new dimension of thinness and flexibility. In this context, this thesis has focused on one particular building block of the vast and emerging field of organic electronics: the organic thin-film transistor (OTFT) which uses organic compounds as semico...

متن کامل

Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009